
NASA/CR-2000-210086

ICASE Report No. 2000-12

A Compositional Approach to Statecharts Semantics

Gerald Liittgen

ICASE, Hampton, Virginia

Michael vonder Beeck

Munich University of Technology, M_chen, Germany

Rance Cleaveland

State University of New York at Stony Brook, Stony Brook, New York

March 2000



The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key

part in helping NASA maintain this

important role.

The NASA STI Program Office is operated by

Langley Research Center, the lead center for
NASA's scientific and technical information.

The NASA STI Program Office provides

access to the NASA STI Database, the

largest collection of aeronautical and space

science STI in the world. The Program Office
is also NASA's institutional mechanism for

disseminating the results of its research and

development activities. These results are

published by NASA in the NASA STI Report

Series, which includes the following report

types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results

of NASA programs and include extensive

data or theoretical analysis. Includes

compilations of significant scientific and
technical data and information deemed

to be of continuing reference value. NASA

counter-part or peer-reviewed formal

professional papers, but having less

stringent limitations on manuscript

length and extent of graphic

presentations.

TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain
minimal annotation. Does not contain

extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATIONS.

Collected papers from scientific and

technical conferences, symposia,

seminars, or other meetings sponsored or

co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to
NASA's mission.

Specialized services that help round out the

STI Program Office's diverse offerings include

creating custom thesauri, building customized

databases, organizing and publishing

research results.., even providing videos.

For more information about the NASA STI

Program Office, you can:

Access the NASA STI Program Home

Page at http://www.sti.nasa.gov/STI-

homepage.html

• Email your question via the Internet to

help@ sti.nasa.gov

• Fax your question to the NASA Access

Help Desk at (301) 621-0134

• Phone the NASA Access Help Desk at

(301) 621-0390

Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320



NASA/CR-2000-210086

ICASE Report No. 2000-12

= :-%i

_;_ _ ._i_i!i....... _; _

A Compositional Approach to Statecharts Semantics

Gerald Lfittgen

ICASE, Hampton, Virginia

Michael vonder Beeck

Munich University of Technology, Mfichen, Germany

Rance Cleaveland

State University of New York at Stony Brook, Stony Brook, New York

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS 1-97046

March 2000



Available fi'om tile following:

NASA Center for AeroSpace hffomlation (CASI)

7121 Standard Drive

Hanover, MD 21076 1320

(301) 621 0390

National TectHficalhffomlation Service(NTIS)

5285 Port Royal Road

Spfingfield, VA22161 2171

(703) 487 4650



A COMPOSITIONAL APPROACH TO STATECHARTSSEMANTICS*

GERALDLUTTGENt,MICHAELVONDERBEECK$,ANDRANCECLEAVELAND§

Abstract. Statechartsis a visuallanguagefor specifyingreactivesystembehavior.Theformalism
extendstraditionalfinite-statemachineswithnotionsofhierarchyandconcurrency,andit isusedin many
popularsoftwaredesignnotations.A largepartoftheappealof Statechartsderivesfromits basisin state
machines,withtheirintuitiveoperationalinterpretation.ThetraditionalsemanticsofStatecharts,however,
suffersfroma seriousdefect:it is not compositional,meaningthat thebehaviorof systemdescriptions
cannotbeinferredfromthebehavioroftheirsubsystems.Compositionalityisa prerequisitefor exploiting
themodularstructureof Statechartsfor simulation,verification,andcodegeneration,andit alsoprovides
thenecessaryfoundationforreusability.

Thispapersuggestsa newcompositionalapproachto formalizingStatechartssemanticsasflattened
transitionsystemsin whichtransitionsrepresentsystemsteps.Theapproachbuildson ideasdeveloped
fortimedprocesscalculiandemploysstructuraloperationalrulesto definethetransitionsofa Statecharts
expressionin termsof thetransitionsof its subexpressions.It is first investigatedfor a simpledialectof
Statecharts,with respectto avariantofPnueliandShalev'ssemantics,andisillustratedbymeansofasmall
example.Todemonstrateitsflexibility,theproposedapproachisthenextendedto dealwithpracticallyuseful
featuresavailableinmanyStatechartsvariants,namelystatereferences,historystates,andpriorityconcepts
alongstatehierarchies.

Key words, compositionality,operationalsemantics,Statecharts

Subject classification. Computer Science

1. Introduction. Statecharts [6] is a visual language for specifying reactive, embedded, and real-time

systems. The formalism extends finite-state machines with concepts of hierarchy, concurrency, and priority;

the success of Statecharts in the Software Engineering community is founded on its intuitive semantics and

its capacity for modeling the complex control aspects inherent in many software systems. Different dialects

of the language [30] have been employed in several software design notations -- including ROOM [25],

STATEMATE [9], and UML [3] -- and commercial tools provide support for them. Nevertheless, precisely

defining Statecharts' semantics has proved extremely challenging, with a variety of proposals being offered

in the literature [5, 7, 8, 12, 13, 14, 16, 17, 19, 21, 23, 24, 27].
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Existing Statecharts variants typically conform to the following interpretation of system behavior. A

Statechart may respond to an event entering the system by engaging in an enabled transition, thus perform-

ing a micro step. This transition may generate new events which, by causality, may in turn trigger additional

transitions while disabling others. The synchrony hypothesis ensures that one execution step, a so-called

macro step, is complete as soon as this chain reaction comes to a halt. There is, however, an additional

desirable ingredient that a practical Statecharts semantics should have: compositionality. Compositionality

ensures that the semantics of a Statechart can be determined from the semantics of its components. This is

of particular importance when simulating Statecharts or generating code, as one does not want to waste re-

sources re-compiling a large Statechart if only a few of its components are changed. Compositionality is also

useful when formally analyzing or verifying Statecharts. Unfortunately, all practically-relevant approaches

to Statecharts semantics ignore compositionality, except for an approach presented for synchronous STATE-

MATE [5] whose semantics does not obey the synchrony hypothesis. Indeed, theoretical studies conducted

by Huizing and Gerth [11] showed that one cannot combine the features of causality, synchrony hypothesis,

and compositionality within a step semantics which labels transitions by sets of "input/output" events. In

fact, the classical semantics of Statecharts -- as defined by Pnueli and Shalev [23] -- satisfies the synchrony

hypothesis and causality, but is not compositional.

The aim of this paper is to present a new approach to defining Statecharts semantics which combines

all three abovementioned features in a formal, yet operationally intuitive, fashion. Our semantic account

borrows ideas from timed process calculi [10], which also employ the synchrony hypothesis [2] and which

allow one to represent ordinary system behavior and clock ticks using labeled transition systems. These

transition systems are defined via structural operational rules [22] -- i.e., rules in SOS format -- along the

state hierarchy of the Statechart under consideration. Our semantics explicitly represents macro steps as

sequences of micro steps which begin and end with the ticking of a global clock. Thereby, compositionality is

achieved on the explicit micro-step level and causality and synchrony on the implicit macro-step level. The

current work builds on previous research by the authors [15], which developed a compositional timed process

algebra that was then used to embed a simple variant of Statecharts introduced in [16]. That work indirectly

yielded a compositional operational semantics for Statecharts. In this paper, we re-develop the semantics

of [15] without reference to a process algebra, thereby eliminating the rather complicated indirection. Our

intention is to make the underlying semantic issues and design decisions for Statecharts more apparent and

comprehensible. The paper also argues for the flexibility and elegance of our approach by extending our

semantics to cope with popular Statecharts features used in practice, such as state references, history states,

and priority concepts.

Organization. The next section gives a brief overview of Statecharts, including our notation and its

classical semantics. Sec. 3 presents our new compositional approach to Statecharts semantics. It also

establishes a coincidence result with respect to the traditional step semantics and illustrates the approach by

means of an example. Sec. 4 shows how our framework can be extended to include various features employed

in many Statecharts dialects. Finally, Sec. 5 discusses related work, while Sec. 6 contains our conclusions

and directions for future research.

2. A Brief Overview of Statecharts. Statecharts is a specification language for reactive systems,

i.e., systems characterized by their ongoing interaction with their environment. The notation enriches basic

finite-state machines with concepts of hierarchy, concurrency, and priority. In particular, one Statechart

may be embedded within the state of another Statechart, and one Statechart may be composed of several



simultaneouslyactivesub-Statechartswhichcommunicateviabroadcastingevents.Transitionsarelabeled
bypairsof eventsets,wherethefirst componentis referredto astrigger and may include negated events,

and the second is referred to as action. Intuitively, if the environment offers all the positive but none of the

negated events of the trigger, then the transition is enabled and can be executed, thereby generating the

events in the label's action.

As a simple (academic) example, consider the Statechart de-

picted to the right. It consists of an and-state, labeled by nl,

which denotes the parallel composition of the two Statecharts

labeled by n2 and n3, both of which are or-states describing a

sequential state machine. Or-state n2 is further refined by or-

state n4 and basic state n5, which are connected via transition tl

labeled by b. The label specifies that tl is triggered by the occur-

rence of event b; its execution does not generate any new event

as its action is empty. Or-state n4 contains the basic states ns

and n9, connected by transition t3 with trigger a A _b and empty

n 3

In_l

t_la/b

InTI

F_G. 2.1. Example Statechart

action; hence, t3 is enabled if event a but not event b occurs. Or-state n3 consists of two basic states n6

and n7 connected via transition t2 with label a/b, so that upon occurrence of trigger event a, transition t2

can be executed and generate event b.

In this paper, we first consider a simple dialect of Statecharts that supports a basic subset of the popular

features present in many Statecharts variants. In particular, it considers hierarchy and concurrency. However,

it ignores interlevel transitions (i.e., transitions crossing borderlines of states), state references (i.e., triggers

of the form in(n), where n is the name of a state), and history states (remembering the last active sub-state

of an or-state). In addition, state hierarchy does not impose implicit priorities to transitions in a way that

either transitions on higher levels of the hierarchy have precedence over lower level ones or the other way

around. To illustrate the flexibility of our approach, we show in Sec. 4 how it can be extended to deal with

state references, history states, and the abovementioned priority concepts. Interlevel transitions, however,

cannot be brought in accordance with a compositional semantics, as they represent an unstructured "goto"

behavior (cf. Sec. 5).

2.1. Term-based Syntax. For our purposes it is convenient to represent Statecharts not visually but

by terms, as is done in [15, 16]. Formally, let Af be a countable set of names for Statecharts states, 7- be

a countable set of names for Statecharts transitions, and H be a countable set of Statecharts events. For

technical convenience we assume that Af and 7- are disjoint. With every event e E H we associate a negated

counterpart _e and define _e :df e as well as _E :df {_e[e • E} for E C H U {_e[e • H}. The set SC of

Statecharts terms is then defined by the following inductive rules.

1. Basic state: If n • Af, then s = [n] is a Statecharts term.

2. Or-state: Suppose that n • Af and that Sl,... ,Sk are Statecharts terms for k > 0, with _' =df

(81,... ,8k). Also let p =df {1,... ,k} and l • p, with T C_ T x p x 2 I_U_I_ x 2n x p. Then

s = [n : _'; l; T] is a Statecharts term. Here Sl,... , Sk are the sub-states of s, set T contains the

transitions connecting these states, Sl is the default state of s, and sl is the currently active sub-state

of s.

3. And-state: If n • A/, if Sl,... ,Sk are Statecharts terms for k > 0, and if g=df (81,... ,8k), then

s = [n : g] is a Statecharts term, where Sl,... , sk are the (parallel) sub-states of s.



Transitions of or-states In: (81,... , 8k); l; T] are of the form [----df (t, i, E, A, j), where (i) t is the name of [,

(ii) source(_ =df si is the source state of [, (iii) trg(_ =df E is the trigger of [, (iv) act([) =df A is the

action of [, and (v) target([) =df sj is the target state of [. In the sequel, we let trg+(D stand for trg(_ MH

and trg-(D for trg(D M_H. For technical convenience, we assume that all state names and transition names

are mutually disjoint. Hence, we may uniquely refer to states and transitions by using their names, e.g., we

may write t for [. We also assume that no transition produces an event which appears negated in its trigger.

The Statecharts term corresponding to the Statechart depicted in Fig. 2.1 is term Sl, which is defined as

follows. 1

81=df [/),1:(82,83)]
83=df [/)'3:(86,87);1; {(t2,1, {a},{b},2)}]
so =dr [nd

82=df [n2: (84,85);1; {(tl, 1,{b},0,2)}]
85=df [/),5]
84----df[n4: (88,89);1; {(t3,1,{a, _b},0, 2)}]

87=dr [/),7]
88=dr [/),8]
89=dr [/),9]

2.2. Classical Semantics. In this section, we sketch the semantics of Statecharts terms adopted in [16],

which is a slight variant of the "classical" Statecharts semantics as proposed by Pnueli and Shalev [23]. We

refer the reader to [16] for a more detailed discussion of the underlying semantic issues.

As mentioned before, a Statechart s reacts to the arrival of some external events by triggering enabled

micro steps in a chain-reaction manner. When this chain reaction comes to a halt, a complete macro step has

been performed. More precisely, a macro step comprises a maximal set of micro steps, or transitions, that

(i) are relevant, (ii) are mutually consistent, (iii) are triggered by events E C_H offered by the environment

or generated by other micro steps, (iv) are mutually compatible, and (v) obey the principle of causality.

These notions may be defined as follows. Let s E SC, let t be a transition in s, let T be a set of transitions

in s, and let E C_ H. Transition t is relevant for Statecharts term s, in signs t E relevant(s), if the source

state of t is currently active. Transition t is consistent with all transitions in T, in signs t E consistent(s, T),

if t is not in the same parallel component as any transition in T. Transition t is triggered by event set E,

in signs t E triggered(s,E), if the positive but not the negative trigger events of t are in E. Transition t is

compatible with all transitions in T, in signs t E compatible(s, T), if no event produced by t appears negated

in a trigger of a transition in T. Finally, we say that transition t is enabled in s with respect to event

set E and transition set T, if t E enabled(s, E, T), where enabled(s, E, T) =df relevant(s) M consistent(s, T) M

triggered(s, E U UtcT act(t)) n compatible(s, T).

A macro step in a Statechart is a subset of enabled that is causally F_c. 2.2. Step construction

well-founded. Technically, causality holds when there exists an ordering function step-construction(s, E);

among the transitions in a macro step such that no transition t of in the var T := O;

macro step depends on events generated by transitions occurring after t. while T C enabled(s,E,T) do
choose t 6 enabled(s,E,T) \ T;

In [16], an operational approach for causally justifying the triggering of each
T:=TU{t}

transition of a macro step is given. It employs the nondeterministic step-
od;

construction function presented in Fig. 2.2, which is adapted from Pnueli
return T

and Shalev [23]. Given a Statecharts term s and a set E of events, the

step-construction function nondeterministically computes a set T* of transitions. In this case, Statecharts
E

term s may evolve in the single macro step s ==_ s' to Statecharts term s ', thereby executing the transitions
A

in T* and producing the events A =df UtcT* act(t). Term s _ can be derived from s by updating the index l

1Note that the second and fifth component of a transition (t, i, E, A, j} in some or-state s = [n:g; l; T] refer to the indexes

of the source and target state in the sequence g_ = (Sl,... , sk), respectively, and not to the states' names.



in every or-state In: (81,... ,sk);l;T] of s satisfying t E T* for some t E T. Observe that once one has

constructed a macro step, all information about how the macro step was derived at is discarded. This is the

source for the compositionality defect of this semantics for Statecharts; when two Statecharts are composed

in parallel, the combination of the causality orderings may introduce newly enabled transitions.

Let us illustrate a couple of macro steps of the example Statechart depicted in Fig. 2.1. For convenience,

we abbreviate a Statecharts term by its active basic states, e.g., term 81 is abbreviated by (ns, n6). Moreover,

we let H =df {a, b} and assume that the environment only offers event a. Then, both transitions t2 and t3
{a}

are enabled, and the execution of t3 results in macro step (ns,n6)0 =_ (n9,n6), i.e., a macro step in which

only a single transition takes part. Although t2 is also enabled, it cannot be executed together with t3 in the

same macro step. The reason is that this would violate global consistency, since t2 generates event b whose

negated counterpart _b is contained in the trigger of t3. However, transitions t2 and tl can take part in the

same macro step, as tl is located in a different parallel component than t2 and is triggered by event b which

is generated by t2. This leads to macro step (ns, n6)_=_ (n5, n7). All potential macro steps of our example
{b}

Statechart can be found in Fig. 3.2, right-hand side.

3. A Compositional Statecharts Semantics. In this section, we present our approach to defining

a compositional semantics for Statecharts, which is based on flat labeled transition systems. In contrast

to related work, we do not develop a semantics on the macro-step level but on the micro-step level and

represent macro steps as sequences of micro steps. Within such a setting, compositionality is easy to achieve.

The challenge is to identify the states at which macro steps start and end so that Statecharts' traditional,

non-compositional macro-step semantics can be recovered. Our solution is based on the observation that

since Statecharts is a synchronous language, ideas from timed process calculi may be adapted. In particular

we use explicit global clock ticks to denote the boundaries of macro steps.

Our flat labeled transition systems therefore clock tick

possess two kinds of transitions: those represent- ',,
,

ing the execution of a Statecharts transition and ',

those representing global clock ticks. In timed

process calculi such transitions are referred to as

action transitions and clock transitions, respec-

tively. The ideas behind our semantics are illus- ....

trated in Fig. 3.1, where clock transitions are la- .......

beled by a. The other transitions are action tran-

sitions and actually carry pairs (E', N') of event

sets as labels. An action transition stands for

a single Statechart transition which is enabled if

the system environment offers all events in E' but

none in N'. The states of our transition systems

chain reaction

(sequences of micro steps)

state 'annotated' w/events

generated by macro step
synctuony hypothesis

_ macro step _1

F_C. 3.1. Illustration of our operational semantics

are annotated with (extended) Statecharts terms from which one may infer the events generated at any point

of execution of the considered Statechart. Accordingly, the classical macro-step semantics of Statecharts can

be recovered from our semantics as follows: Assume that the global clock ticks, symbolizing the beginning of

a macro step, when the system environment offers the events in E. Starting from a clock transition, follow

an arbitrary path of action transitions that are triggered by E, i.e., whose labels (E',N') satisfy E' C_ E

and N' N E = 0. When another clock transition is executed, the constructed macro step is complete. The



statestraversedin thepathcollecttheeventsintroducedbythefiredStatechartstransitionsalongthepath.
Hence,fromthesourcestateof theconcludingclocktransitiononemayextractall eventsgeneratedin the
consideredmacrostep.Notethat, accordingto thesynchronyhypothesis,clocktransitionsareprohibited
unlessnoadditionalactiontransitioncanbeexecutedrelativeto environmentE. In a nutshell, our semantics

is defined in a way that achieves compositionality on the explicit micro-step level, while causality and the

synchrony hypothesis are observed on the implicit macro-step level.

TABLE 3.1

Functions out and default

out([n]) ----dfO out([n: _; l; T]) ----dfout(sl)

out([n :: _; l; T]) ----dfout(sl)

default([n]) ----df[n] default([n: _; l; T]) =df [n: #Ez_d_f.o,_(_z)];1; T]

out([n :_; t; T]) =df act(t) LJtrg- (t)

out([n: (Sl,... , sic)]) =df LJ/k=lout(sl)

default([n : _1) ----df[n :defa u It(#) ]

3.1. Formalization. To formalize our abovementioned intuitions, we first need to extend the definition

of Statecharts terms such that "Statecharts snap-shots," taken after partial executions of macro steps, can

be represented. Formally, we add the following rule to the inductive definition of Statecharts terms presented

in Sec. 2: If [n: _'; l; T] is a Statecharts term, then [n: _'; t; T], for t E T, and [n :: _'; l; T] are Statecharts terms.

Intuitively, term In : _';t; T] represents an or-state after firing some 'top-level' transition t E T. On the other

hand, term In :: _'; l; T] represents an or-state after firing some 'inner' transition, i.e., a transition originating

in the active sub-state sl. The extended set of Statecharts terms is denoted by pSC, and its elements are

sometimes referred to as micro terms. Our formalization of Statecharts semantics also requires us to be

able to extract all events out(s) from a micro term s, which are generated by transitions that have been

fired during the considered partial macro step. Additionally, out(s) includes all negated trigger events of

the executed transitions, which is necessary to ensure the Statecharts property of global consistency, as will

become clear shortly. The predicate out(s) C_H U _H can be defined inductively along the structure of s, and

its definition is displayed in Table 3.1. Finally, we need one more auxiliary function, default(s) which, given

a Statecharts term s E SC, resets all the active states of its or-states to their respective initial states. Also

this function can be defined on the structure of s as is done in Table 3.1. For convenience, we write default(_')

for default((Sl,... , Sk)) =df (default(Sl),... , default(Sk)) and define s'[z_,,] =dr (81,... , 81--1, 8 t, 8/+1,. • • , 8k),

for all 1 < l < k and s' E SC.

Now we are able to present our semantics of a Statecharts term s E SC. As indicated before, the

semantics of s is defined as a labeled transition system, such that (i) the states are terms in #SC, (ii) the

start state is s, and (iii) the two transition relations, ----+ C_#SC x 2n x 2nU_n x #SC and __Z+C_#SC x #SC,

are defined via structural operational rules [22]. Each rule is of the form

premise
name side condition

conclusion

and should be read as follows: Rule (name) is applicable if both the statements in its premise and its side

condition hold; in this case, one might infer the conclusion.

The operational rules for action transitions are given in Table 3.2, where the subscript of the transition

relation should be ignored for now; the subscript will only be needed in Sec. 4.3. For convenience, we write

s -_ s' instead of (s, E, N, s') E ---+. Moreover, we let _"stand for the sequence (Sl,... , Sk) and write [_'[
N

for k. Intuitively, Rule (OR1) states that or-state [n : _'; l; T] can evolve to [n: _'; t; T] if transition t is enabled,



TABLE 3.2

Operational rules: action transitions

OR1 source(t) = sl OR2
trgd- (t)

[n:_; l;T] _. [n: _;t; T]
_trg-- (t)U _act(t)

[n:_;l; T] _,., [n:: _E,_,_;l; T]

E I E I

E

AND [n:g'] E\uJcz°"t(_J)) NAUout(sj) =O OR3 [n::_';l;T] _,._ [n::sEz_+_il,l,T ]N ",_ [n: s_,_,_l] _ _ • •

i.e., if (i) the source state of t is the currently active state sl, (ii) all its positive trigger events trg+(t)

are offered by the environment, (iii) the positive counterparts of all its negated trigger events trg-(t) are

not offered by the environment, and (iv) the negated events corresponding to act(t) are not offered by the

environment, i.e., no transition within the same macro step has already fired due to the absence of such an

event. The latter is necessary for implementing global consistency in our semantics. Rules (OR2) and (OR3)

deal with the case that an inner transition of the active sub-state sl of the considered or-state is executed.

Hence, sub-state sl needs to be updated accordingly. The resulting micro term In :: g'Ez_+,il;l; T] also reflects

-- via the double colons -- that a transition originating within the or-state has been executed, in which case

the or-state may no longer engage in a transition in T during the same macro step, i.e., before executing the

next clock transition. Finally, Rule (AND) deals with and-states. If sub-state sl fires a transition sl -[+ s I,
N

then the and-state can do so as well, provided that no event in N is offered by some other sub-state (cf.

the rule's side condition). Moreover, for triggering the transition in the context of the and-state only those

events e E E need to be offered by the environment, which are not already offered by some other 'parallel'

sub-state of the and-state, i.e., for which e E E \ Uj#l out(sj) holds.

TABLE 3.3

Operational rules: clock transitions

cBAS cOR1 target(t) = sl cOR3
[n] _x_+[n] [n: S';t; T] _X_+[n:S'E,_do,°o.t(,,)_;l; T]

!
8l --_ 8 l

[n ::_;l; T] _ [n: _E,_,_;l; T]

_ 0 0

cOR2 [n:g;l;T] 7# cAND Vl < Z< Igl. _ -_ 4 [n:g]
[n : g; l; T] -_ [n : #; l; T] o [n:g] __X_+[n:g'] o

Clock transitions are defined by the rules in Table 3.3, which use the notation s __5+ s_ for (s, s_) E __5+.

Intuitively, a clock transition models the completion of a macro step by updating the active states in the

considered micro term according to the transitions that have been executed in the macro step. Due to the

synchrony hypothesis of Statecharts, this implies in particular that a clock transition can only be performed

if the considered Statechart term s cannot autonomously engage in a further action transition, i.e., if s _7]+

holds, which stands for fls _. s -_ s _. Note that both event sets in the label must be empty; otherwise, the
0

action transition is not enabled with respect to all potential system environments and our semantics would

not be compositional. In this vein, Rule (cBAS) states that a basic state can always accept a clock tick

as it does not possess any (enabled) transitions. Rule (cOR1) reflects the update of micro term In : g'; t; T]

representing an or-state after transition t E T has fired. More precisely, the sub-state of the considered

or-state is updated to the target state st of t, where all active states of st are reset to their initial states. In



casethat notransitionof theconsideredor-statehasbeenexecuted-- i.e.,theor-stateis representedby
microterm [n:g; l; T] -- and no one is enabled -- i.e., [n : _ l; T] _ holds --, a clock tick can be accepted

and does not result in any change of state (cf. Rule (cOR2)). Rule (cOR3) formalizes the behavior that an

or-state can engage in a clock transition if its active sub-state can engage in one. Finally, Rule (cAND)

states that an and-state can engage in a clock transition if all its sub-states can, provided that there is no

action transition whose execution cannot be prevented, i.e., provided that [n:_'] _ holds.

It is fairly easy to see that our new semantics is compositional, as each transition of a Statecharts

term is defined by referring to the transitions of its sub-terms only. One exception is that the definition

of clock transitions depends on the one of action transitions. However, the same is not true the other way

around, i.e., there are no mutual dependencies in our operational rules. As an alternative means for checking

compositionality, one may employ meta-theoretic results about the compositionality of semantics defined

via structural operational rules (SOS rules) [29].

3.2. Macro-step Interpretation and Coincidence Result. The above rules provide a composi-

tional semantics of Statecharts on the micro-step level. However, our consideration of a global abstract

clock allows us to retrieve the classical macro-step semantics of Statecharts, as mentioned at the beginning

of Sec. 3.

E stDEFINITION 3.1. For s,s ! • SC and E,A C H we write s_ and say that s may perform a macro
-- A

step with input E and output A to s t, if3sl,... ,sin • #SC, 3E1,... ,E,m C H, 3N1,... ,Nm C H t2 _H,
E 1 E 2 Em

for some m • N, such that (1) s ---+ 81 _ ... ----+ Sm --% S', (2) ei=lm Ei C E, (3) ei=lm Ni N E = _,

N1 N2 Nm

(5) A = out(sin) N H, and (5) flSm+l, Era+l, Nm+l. Sm _ Sin+l, Em+l C_E, and Nm+l N E = 0.
N m-_ l

While Conds. (2) and (3) guarantee that all considered action transitions are enabled by the environment,

Cond. (5) ensures the maximality of the macro step, i.e., it implements the synchrony hypothesis. Now, we

can establish the desired result, namely that our macro-step semantics coincides with the classical macro-

step semantics of Statecharts. Hence, our semantics is not 'randomly' defined.

E E !

THEOREM 3.2. Let s, s t • 5C and E, A C_ H. Then s =:_Ast if and only if s _ s .

Proof sketch. Consider the following construction. If T = (tl,... ,tin) is a sequence of Statecharts

transitions of s • SC generated by the step-construction function relative to environment E C_ H and
m

satisfying A = Ul=l out(h), then there exists a sequence of m action transitions as described in Def. 3.1,

such that the l-th action transition corresponds to the execution of h in s. Vice versa, assume that the

conditions of Def. 3.1 are satisfied for some E C_H and that T = (tl,... ,tin) is the sequence of Statecharts

transitions which can be identified with the considered sequence of action transitions starting in s. Then,

T can be generated by the step-construction function relative to s and E, where the transitions fire in the

order indicated by sequence T. 0

3.3. Example. We now return to our example Statechart of Fig. 2.1. Our semantics of this Statechart

and its classical macro-step semantics are depicted on the left and right in Fig. 3.2, respectively. In both

diagrams, we represent a transition of the form s -_ s t by writing E to the left of or above the arrow and N
N

to the right of or below the arrow. We also abbreviate a set of events by listing its elements, e.g., writing ab

for {a, b}, and denote alternatives for E at the same arrow by separating them by commas. Finally, we

employ our notation introduced in Sec. 2.2 and additionally write t for the micro term [n:g; t; T].



/)(n8, re)_'_ab_(n8' n6)_ a _b

(t 1, re) (t 3, n6) (t 1, n6)

U b

[ (n9' t2) _b (rig' n6) (5-1

(n], nv) _ _7 (n,, t2)_abb (n,', n6)

ns, n6)

/b (n9Tn6) O_

(n 5 nT)_ a, ab 5 n6)' b '

F_o. 3.2. Our semantics (left) and the macro-step semantics (right) for the Statechart depicted in Fig. 2.1

The right diagram in Fig. 3.2 includes the macro steps (ns,n6)_ (n9,n6) and (ns,n6)_ (n5,n7)
¢ {b}

which we already considered in Sec. 2.2. According to Thm. 3.2, both macro steps can be explained in

terms of sequences of micro steps displayed on the leR in Fig. 3.2, which start with state (ns,n6) and
{a}

end with the execution of a clock transition. The first macro step is given by the sequence (ns,n6) ----+
{b}

(ta,n6) __5+ (ng,n6), where out((ta,n6)) = {_b}, and the second macro step is encoded by the sequence

(ns,n6) _-_ (ns,t2) _ (tl,t2) --g-+ (n5,n7), where out((tl,t2)) = {b}.
{_b} O

4. Extensions: State References, History States, & Priority Concepts. We now illustrate

the flexibility of our approach by adapting it to incorporate features offered by many popular Statecharts

variants, namely state references, history mechanisms, and priority concepts along the or-state hierarchy.

TABLE 4.1

Modified definition of out needed when modeling state references

out([n]) =df {in(n)} out([n: 8";l; r]) =df out(st) U {in(n)} out([n ::8;l; r]) =df out(st) [.I{in(n)}

out([n: (Sl,... , Sk)]) =dr LJ/k=l out(st) U {in(n)} out([n: 8; t; T]) =dr act(t) U trg-(t) U {in(n)}

4.1. State References. Many Statecharts variants permit trigger events of the form in(n), for n E A/,

which are satisfied whenever state n is active. In our setting, we may encode this feature via the employed

communication scheme. To do so, we first extend the set H of events by the distinguished events in(n), for

all n E A/. Moreover, the sets out(s), for s E #SC, need to be re-defined -- as shown in Table 4.1 -- such

that they include the events in(n), for any active state n in s. It is easy to see that the resulting semantics

handles state references as expected.

4.2. History States. Upon entering or-states, their initial states are activated. However, in practice

it is oRen convenient to have the option to return to the sub-state which was active when last exiting an

or-state, e.g., after completing an interrupt routine. In Statecharts' visual syntax this is done by permitting

distinguished history states in or-states to which transitions from the outside of the considered or-states may

point. Such history states can have two flavors: deep and shallow. Deep means that the 'old' active state of

the or-state and the 'old' active states of all its sub-states are restored. Shallow means that only the active

state of the or-state is restored and that its sub-states are reinitialized as usual. In our term-based setting,

we may model history states and transitions traversing to history states as follows. For each transition t

pointing to some or-state s, we additionally record a history flag p E {none, deep, shallow}. If p = none,

then transition t is interpreted as usual, otherwise it is interpreted to point to the deep -- if p = deep -- or

shallow -- if p = shallow -- history state in s.



In the light of this formalization, it is easy to integrate a history mechanism in our operational seman-

tics. One just has to replace function default(sj) in Rule (cOR1) by function default(p, sj), where p E

{none, deep, shallow} is the history flag of the considered transition t. The terms default(none, s) and

default(deep, s) are simply defined by default(s) and s, respectively. The definition of default(shallow, s)

can be done along the structure of Statecharts terms as follows.

(i) default(shallow, [n]) ----df [n]

(ii) default(shallow, [n:k l; T]) =dr [n:_[z_dofa.,t(_z)]; l; T]

(iii) default(shallow,[n:_]) =df [n:default(shallow,_) ]

Here, default(shallow,_), where _ = (Sl,... ,Sk), stands for (default(shallow, s1),... ,default(shallow, sk)).

Note that default(p, s) needs only be defined for Statecharts terms and not for the more general micro terms.

4.3. Priority Concepts. Many Statecharts dialects consider an implicit priority mechanism along the

hierarchy of or-states. In UML Statecharts [3], for example, inner transitions of an or-state have priority

over outer transitions, while this is the other way around in STATEMATE [7]. Let us provide a flexible

scheme for encoding both priority concepts, for which we introduce the notion of addresses which are built

according to theBNF a ::= • I •.a I lit'a,f°rl E N. The set of all such addresses is denoted

by .4ddr. Each action transition is then labeled with an address pointing to the sub-term of the considered

Statecharts term, from which the transition originates (cf. the subscripts of the transitions in Table 3.2).

Intuitively, the symbol • encodes that the transition originates from the considered state, i.e., this state

must be an or-state and the transition leaves the or-state's active sub-state. Address • • a also requires the

state to be an or-state and the transition to originate from address a of the currently active sub-state of the

or-state. Finally, address lit "a indicates that the considered state is an and-state with at least l sub-states

and that the transition originates from address a of the l-th sub-state.

TABLE 4.2

Priority Structure _ la UML (left) and _ la STATEMATE (right)

MI(.) =dr {V. fllfl _ Addr} MI(.) =dr 0

MI(V. a) =df {V' 919 e Ml(a)} MI(V. O_) =df {,I} U {V' 919 e Ml(a)}

al(Ib 'a)----dr {Ib 'fllfle al(a)} al(Ib 'a)----dr {Ib 'fllfle al(a)}

Given an address a E .4ddr, we can now define the set Ml(a) of addresses which are considered more

important than a according to the chosen priority concept. The definitions of Ml(a) for the priority concepts

of UML Statecharts and STATEMATE can be done straightforwardly along the structure of a and are given

in Table 4.2. They do not require any extra explanation. Now, we can define a new transition relation

for action transitions, which coincides with the original transition relation given in Sec. 3, except that

low-priority action transitions are filtered out.
E

8 N-_a 81 0

Prio --E /3/3 E Ml(a). s --+fl
8 N-_a 81 0

This rule states that an action transition located at address a may be executed if there exists no action

transition at some more important address/3, which cannot be prevented in any system environment. The

justification for the fact that only action transitions with empty sets as labels have pre-emptive power over

lower prioritized action transition is similar to the one regarding the pre-emption of clock transitions in

Sec. 3. One might wonder why this "two-level" definition of Statecharts semantics is still compositional, as
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theabovesideconditionconcernsaglobalproperty.In ordertoseethis,onecandistributethesidecondition
amongtheoriginalrulesfor actiontransitions,suchthat compositionalitybecomesobvious(cf.App.A) or
employmeta-theoreticresultsregardingSOSsemantics(cf. [29]).

5. Related Work. Wecategorizerelatedworkalongthethreedimensionsof Statechartssemantics:
causality,synchrony,andcompositionality.Thisclassificationhasfirst beenconsideredby Huizingand
Gerth[11]whodemonstratedthatthesedimensionscannotbetriviallycombined.

TheoriginalStatechartssemantics,aspresentedby Harelet al. [8],obeyscausalityandsynchrony.
However,it ignorescompositionalityandthe conceptof globalconsistency.Lateron,Huizinget al. [12]
providedacompositionaldenotationalsemanticsforthisvariant,whilePnueliandShalev[23]suggestedthe
introductionofglobalconsistencyforimprovingthepracticalityofthevariant.However,PnueliandShalev's
formalizationisagainnotcompositional.

Otherresearchershavedevelopedlanguageswhosesemanticsobeythesynchronyhypothesisandcompo-
sitionalitybutviolatecausality.ProminentrepresentativesofsuchlanguagesincludeBerry'sESTEREL [2],

to which recently some dialect of Statecharts has been interfaced as graphical front-end [26], and Maraninchi's

ARGOS [17]. Both languages are deterministic and treat causality rather conservatively in a pre-processing

step, before determining the semantics of the considered program as Mealy automaton via structural oper-

ational rules [18]. Moreover, ARGOS semantics significantly differs from Statecharts semantics by allowing

sequential components to fire more than once within a macro step. Another approach to formalizing Star-

echarts, which fits into this category, is the one of Scholz [24] who uses streams as semantic domain for

defining a non-causal fixed point semantics.

The popular synchronous version of STATEMATE [7] neglects the synchrony hypothesis. Events gen-

erated in one step may not be consumed within the same step but in the next step only. The operational

semantics of this dialect has been compositionally formalized by Damm et al. [5]. It was also considered by

Mikk et al. [19] who translated STATEMATE specifications to specification languages of model-checking

tools by using hierarchical automata [20] as intermediate language. This intermediate language was em-

ployed by Latella et al. [13], too, for formalizing the semantics of UML Statecharts [3] in terms of Kripke

structures. However, UML Statecharts discard not only the synchrony hypothesis but additionally negated

events and, thereby, make the notion of global consistency obsolete. Their semantics was also investigated

by Paltor and Lilius [21], who developed a semantic framework on the basis of a term-rewriting system.

Our work is, however, most closely related to approaches which aim at combining all three dimensions

-- causality, synchrony, and compositionality -- within a single formalism. These approaches may be

split into two classes. The first class adapts a process-algebraic approach, where Statecharts languages

are embedded in process algebras, for which structured operational semantics based on labeled transition

systems are defined. Uselton and Smolka [28] have pioneered this approach which has then be refined by

Levi [14]. Their notion of transition system involves complex labels of the form (E, 4), where E is a set of

events and _ is a transitive, irreflexive order on 2E encoding causality. The second class is characterized by

following essentially the same ideas but avoiding the indirection of process algebra. Research by Uselton and

Smolka [27] again employs the abovementioned partial order, whereas Maggiolo-Schettini et al. [16] require

even more complex and intricate information about causal orderings, global consistency, and negated events.

While our present work also fits into this class, although it originated in the former [15], it avoids complex

labels by representing causality via micro-step sequences and by adding explicit clock transitions to retrieve

11



macro-stepinformation.Thereby,oursemanticsisnotonlysimpleandconcisebutalsocomprehensibleand
suitedforinterfacingStatechartsto existinganalysisandverificationtools.Inaddition,ourapproachisvery
flexibleaswedemonstratedbyaddingseveralprominentfeatures,namelystatereferences,historystates,
andpriorityconcepts,to ourinitiallyprimitiveStatechartsdialect.

Finally,webrieflycommentoninterleveltransitionswhichprohibitacompositionalStatechartssemantics
astheyarebasedontheideaof "goto-programming."Firstofall,interleveltransitionsjeopardizeastrictly
structuraldefinitionof Statechartsterms,whichisaprerequisitefor derivinganycompositionalsemantics.
Hence,for modelinginterleveltransitions,thesyntaxof Statechartsmustbechangedin a waysuchthat
interleveltransitionsmayberepresentedbyseveralintraleveltransitionswhichareconnectedviadedicated
ports. This can be done either explicitly, as in the Communicating Hierarchical State Machine language

introduced by Alur et al. [1], or implicitly via a synchronization scheme along the hierarchy of or-states, as

in Maraninchi's ARGOS [17].

6. Conclusions. This paper presented a new approach to formalizing Statecharts semantics, which

is centered around the principle of compositionality and borrows from ideas developed for timed process

algebras. In contrast to related work, our approach combines all desired features of Statecharts semantics,

namely causality, synchrony, and compositionality, within a single formalism, while still being simple and

comprehensible. Its foundation on structural operational rules guarantees that our semantics is easy to

implement in specification and verification tools and that it can be adapted to several Statecharts dialects.

The proposed semantic framework also permits the integration of many features desired in practice, as we

demonstrated by extending it to dealing with state references, history states, and priority concepts. Last, but

not least, we hope that this paper testifies to the utility of applying knowledge from the field of Concurrency

Theory to formalizing practical specification languages rigorously yet clearly.
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Appendix A. Revised Operational Rules for Priority Concepts. In this appendix, we show that

our semantics, when incorporating some priority concept along the hierarchy of or-states, does not need

to be defined in two levels, as is done in Sec. 4.3. Instead one may modify the rules of action transitions

presented in Sec. 3 to achieve a single-level semantics. However, this can only be done when having a specific

priority concept -- e.g., _ la UML Statecharts [3] or _ la STATEMATE [9] -- in mind and is not as elegant

as the approach presented in the main part of the paper.

If one is interested in the priority concept of UML Statecharts, one has to replace Rules (OR1) and (AND)

by Rules (OR1') and (AND') which are displayed in Table A.1 in order to obtain a single-level semantics.

In case of STATEMATE's priority concept, one must substitute Rules (OR2) and (AND) by Rules (OR2')

and (AND'). It is easy to inspect that the new sets of rules lead to compositional semantics. The more

complex side conditions in the rules presented in Table A.1, when compared to the ones in the original

rules, correspond to the "localizations" of the side condition of Rule (Prio) introduced in Sec. 4.3 and are

14



TABLE A. 1

Revised operational rules for action transitions

OR1'

OR2'

AND'

trg-}- (t)

[n:#;l;T] ). [n: #; t; T]
_t,_- (t)u _¢t(t)

q)

source(t) = st,Vc_ E Adch'. st 7L_
O

E
;at E T. trg(t) ----0

E

31 < l < I_1._ _ 4 N rh Uj#t out(sj) -- 0,

[n:_'] _\uj_,oot(_j) _' " E'N )lh'_ [n:#[,_+_l]] ,_/3e MI(c_),s'/,E',N'.st_z st, C_Uj#tout(sj),N' AUj#tout(sj) =O

self-explanatory. The modified transition relations for action transitions are equivalent to the transition

relations _ introduced in Sec. 4.3, in both the UML Statecharts and the STATEMATE setting.

E

THEOREM A.1. Let s, s t E #5C, E C_ II, N C_ II U_II, and (_ E _4ddr. Then s _a s t if and only if
E

8 N--_C_8 t .

AS a consequence, the operational semantics presented in Sec. 4.3 is compositional. The proof of this theorem

bears no theoretical complexity and can be done along the structure of s. Similar proofs and constructions

are standard in process-algebraic frameworks with pre-emption (see, e.g., [4]).
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